Spectral clustering based on learning similarity matrix
نویسندگان
چکیده
منابع مشابه
A Shortest Path Similarity Matrix based Spectral Clustering
This paper proposed a new spectral graph clustering model by casting the non-categorical spatial data sets into an undirected graph. Decomposition of the graph to Delaunay graph has been done for computational efficiency. All pair shortest path based model has been adapted for the creation of the underlying Laplacian matrix of the graph. The similarity among the nodes of the graph is measured b...
متن کاملSpectral clustering and semi-supervised learning using evolving similarity graphs
Spectral graph clustering has become very popular in recent years, due to the simplicity of its implementation as well as the performance of the method, in comparison with other popular ones. In this article, we propose a novel spectral graph clustering method that makes use of genetic algorithms, in order to optimise the structure of a graph and achieve better clustering results. We focus on e...
متن کاملA Novel Spectral Clustering Method Based on Pairwise Distance Matrix
In general, the similarity measure is indispensable for most traditional spectral clustering algorithms since these algorithms typically begin with the pairwise similarity matrix of a given dataset. However, a general type of input for most clustering applications is the pairwise distance matrix. In this paper, we propose a distance-based spectral clustering method which makes no assumption on ...
متن کاملBased on Similarity Metric Learning for Semi-Supervised Clustering
Semi-supervised clustering employs a small amount of labeled data to aid unsupervised learning. The focus of this paper is on Metric Learning, with particular interest in incorporating side information to make it semi-supervised. This study is primarily motivated by an application: face-image clustering. In the paper introduces metric learning and semi-supervised clustering, Similarity metric l...
متن کاملKernel Fuzzy Similarity Measure-Based Spectral Clustering for Image Segmentation
Spectral clustering has been successfully used in the field of pattern recognition and image processing. The efficiency of spectral clustering, however, depends heavily on the similarity measure adopted. A widely used similarity measure is the Gaussian kernel function where Euclidean distance is used. Unfortunately, the Gaussian kernel function is parameter sensitive and the Euclidean distance ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2018
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/bty050